PROGRAMA DE LA ASIGNATURA ELECTROMAGNETISMO

SEM.	CODIGO	TEORIA	PRACT	LAB.	UNIDAD	PRELACION
		H/S	H/S	H/S	CREDITO	
8	CFF381	4	2	0	5	CFF242 - CFF231

1. JUSTIFICACION

El Electromagnetismo es la descripción clásica de la interacción electromagnética, una de las cuatro interacciones fundamentales y acaso la mejor entendida. Su ámbito es tan amplio que difícilmente podríamos imaginar un área de la Física donde no aparezcan fenómenos electromagnéticos. Por otra parte, ha servido y aun sirve como modelo sobre el cual concebir la elaboración de teorías para comprender otras fuerzas.

2. REQUERIMIENTOS

El estudiante debe enfrentar esta materia con cierta madurez, que le permita comprenderla como modelo global de una interacción medida por un campo clásico, a partir de las ecuaciones básicas del modelo, las ecuaciones de Maxwell. Además debe manejarse con holgura en los terrenos del análisis vectorial, de la integración en varias variables, y el uso de sistemas de coordenadas curvilíneos.

3. OBJETIVOS

Uno de los principales objetivos del curso debe ser que el alumno logre concebir al Electromagnetismo como un modelo preciso de una interacción básica, con sus axiomas y principios, sus ecuaciones fundamentales y secundarias, sus consecuencias, predicciones, estatus experimental, los limites donde la teoría deja de ser válida, y finalmente, de ser posible, su desarrollo histórico.

Además el alumno deberá dar muestra de comprensión de los postulados fundamentales y de extraer las principales consecuencias de ellos.

4. CONTENIDO

- 1. **El Electromagnetismo en Perspectiva**. Ecuaciones de Maxwell
- 2. **Electrostática**. Ecuaciones fundamentales. Leyes de Coulomb, Gauss. El potencial y las ecuaciones de Poisson y Laplace.
- 3. Soluciones a problemas electrostáticos.
- 4. **Campos eléctricos en la materia**. Metales y dieléctricos. Polarizabilidad y teoría microscópica de dieléctricos
- 5. **Magnetostática**. Naturaleza de la corriente eléctrica. Ecuación de continuidad. Ecuaciones fundamentales. Leyes de Biot-Savart y de Ampere.
- 6. Campos Magnéticos en la Materia. Susceptibilidad.
- 7. **Campos variables con el tiempo**. Ecuaciones de Maxwell. Potenciales electromagnéticos. Invariancia de Calibre. Conservación de la carga. Ondas electromagnéticas.
- 8. **Teoría de la Radiación electromagnética**. Potenciales de Lienard-Wiechert.
- 9. **Formulación relativista del electromagnetismo**. Tensor de Maxwell. Cuadripotencial y cuadricorriente.

5. METODOLOGIA

La metodología convencional con clases magistrales y resolución de problemas.

6. RECURSOS

Para cumplir con la metodología se requiere:

- Aulas adecuadas
- Tiza y pizarrón
- Existencia de bibliografía en las bibliotecas.

7. EVALUACION

La evaluación consiste en tres exámenes parciales, un examen final y un examen de reparación, ademas de tareas semanales evaluadas a modo de garantizar que el alumno permanezca al día con la materia.

Primer parcial : finalizado el capítulo 4

Segundo parcial: finalizado el capítulo 6

Problemas periódicos (semanales)

8. BIBLIOGRAFIA GENERAL DEL CURSO

- Feynman. R. P., Lectures on Physics, vol. II
- Reitz- Milford., Fundamentos de la Teoría Electromagnética.
- Panofsky- Phillips., Classical Electricity and Magnetism.
- Jackson., Electrodinámica Clásica.